

Ernteveranstaltung 2015

Herausforderung Proteinversorgung über Getreide

Nahrungsmittelverzehr in Deutschland pro Kopf und Jahr

Protein als Hauptfaktor des Verarbeitungswerts von Weizen

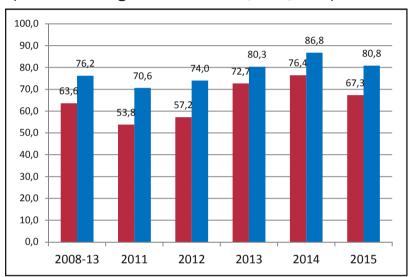
Proteinaspekte

- Proteingehalt entscheidend für Verkaufswert, Index für die Vermarktung des Getreides
- Proteingehalt = schnell und genau zu ermittelnder Parameter für Spezifikationen von
 Gebäcken, nicht ausreichend, Proteinqualität entscheidend (gehören Aminosäuren dazu)
- Gehalt <u>und</u> Qualität des Kleberproteins bestimmen die Backeigenschaften (z.B. Gär-Toleranz)
- Verhältnis von Gliadin zu Glutenin beeinflusst Gluten-Index, Gashaltung, Gebäcklockerung,
 Mehl-Wasseraufnahme und die Teigeigenschaften (Dehnwiderstand / Dehnbarkeit)
- Regionale Bezüge können über Protein-Mapping ermittelt werden
- Weizensensitivität wasserlösliche Proteine Amylase Trypsin Inhibatoren (ATI)
- N-Spätdüngung Proteingehalte Grundwasserschutz, Nitratatlas, EU-Wasserrahmenrichtlinie
- Global müssen 2050/60 etwa 10 Mrd. Menschen versorgt werden, Proteine gefragt
- Neue Proteinquellen sind zu erschließen, über normale Versorgungspfade nicht möglich
- Neue Trends in der Ernährung sind zu erkennen, Pflanzen, Insektenproteine
- Individuelle Produktentwicklung für Zielgruppen (Sportler, Kinder, Erwachsene, Diabetiker, Allergiker, Rentner)

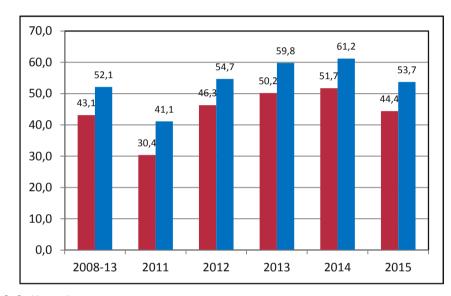
Qualitätsanforderungen an Weizen

MRI - Institut für Sicherheit und Qualität bei Getreide

Klima- und Wasserschutz im Weizenanbau: Folge und Konsequenzen?



Klaus Münzing



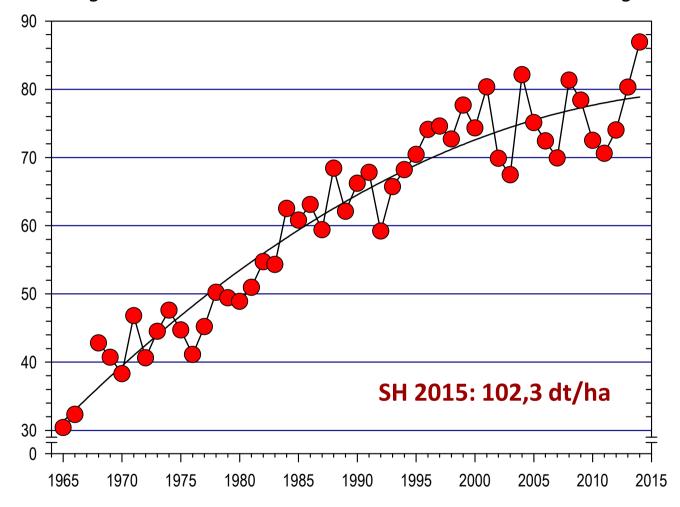
Entwicklung der Hektarerträge von Brotgetreide 2015 in Deutschland

Entwicklung der Hektarerträge Winterweizen [dt/ha] **Brandenburg (BB)** und **Bund** [BEE] (Hektarerträge Weltweit **31,1 dt/ha***).

Entwicklung der Hektarerträge Roggen [dt/ha] Brandenburg (BB) und Bund [BEE]

Ertrag und Qualität des Brotgetreides ist abhängig:

- vom Saatgut (Zielgrößen: Ertrag, Proteingehalt und Stressfaktoren)
- den unterschiedlichen Entwicklungs- und Standortbedingungen
- dem Nährstoffangebot der Böden
- den Witterungsverhältnissen und
- vom notwendigen Düngemitteleintrag


Quellen: Besondere Ernte- und Qualitätsermittlung 2014; 2015 vorläufiges Ergebnis (BEE), *Marktbericht Alfred C. Töpfer 2013

Entwicklung der Hektarerträge Winterweizen – MRI Dr. Münzing VDB 2014

Hektarerträge der deutschen Winterweizenernte von 1965 bis 2014

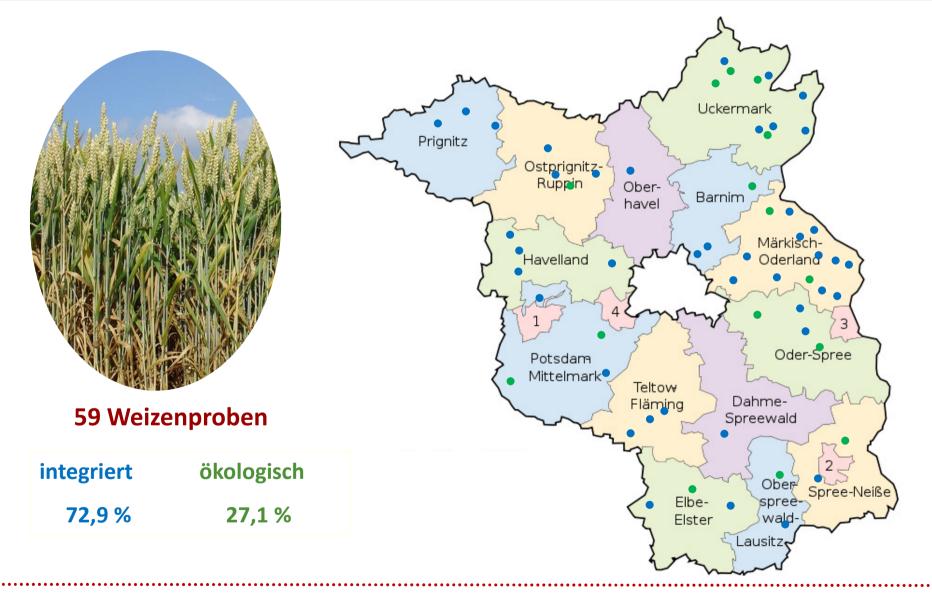
- Ergebnisse der Besonderen Ernte- und Qualitätsermittlung -

Erntemengen 2015 von Brotgetreide in Deutschland

Entwicklung der WW-Erntemengen in 1000 t Brandenburg (BB) und Bund [BEE,2014]

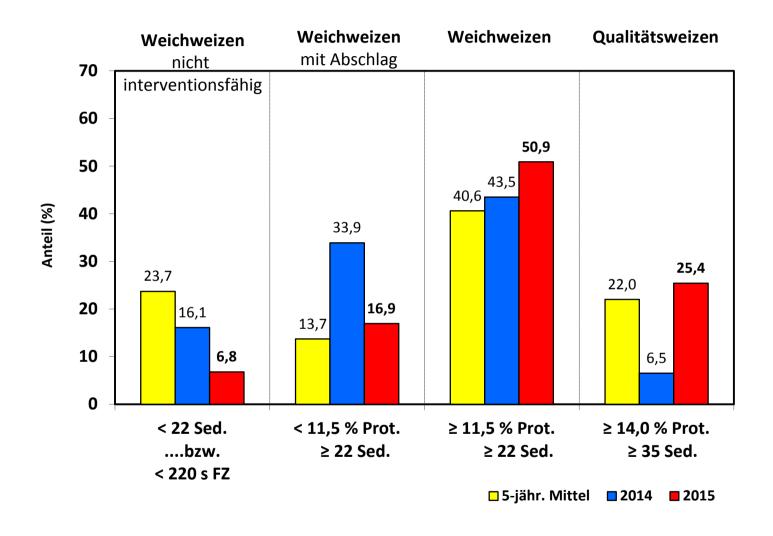
	2008-2013	2011	2012	2013	2014	2015*
Bund	23.751,1	22.396,3	21.396,6	24.634,1	27.415,1	25.986,5
BB	904,1	815,2	721,4	997,1	1.197,6	1.058,4

Entwicklung der Roggen-Erntemengen in 1000 t Brandenburg (BB) und Bund [BEE,2014]

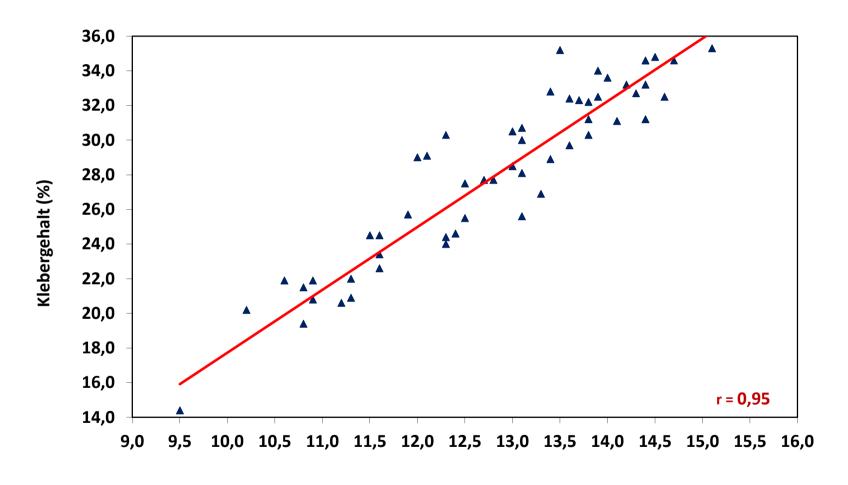

	2008-2013	2011	2012	2013	2014	2015*
Bund	3.361,1	2.520,9	3.878,4	4.689,1	3.854,4	3.345,2
BB	930,3	589,6	974,1	1.188,7	954,6	791,0

- Nutzung als Brotgetreide (VDM) Getreidemahlerzeugnisse
 - 7 Mio. t Weichweizen und 1 Mio. t Roggen (27% und 30% der Erntemenge)
- Anbauflächen in Deutschland, drastischer Rückgang beim Roggen
 - o WW (Winterweizen) 3.215,8 Mio. ha (2014: 3.118); BB 2014: 156.800 ha, 2015: 165.800 ha
 - Roggen 623.100 (2014: 758.000 ha); BB 2014: 184.800 ha, 2015: 187.700 ha

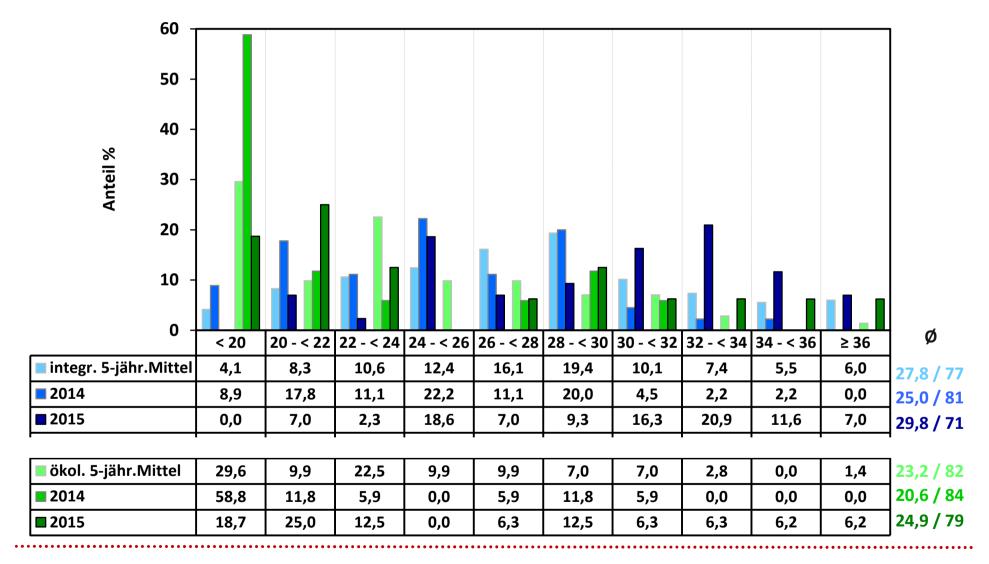
Quelle: Besondere Ernte- und Qualitätsermittlung 2014 (BEE), * vorläufige Ergebnisse



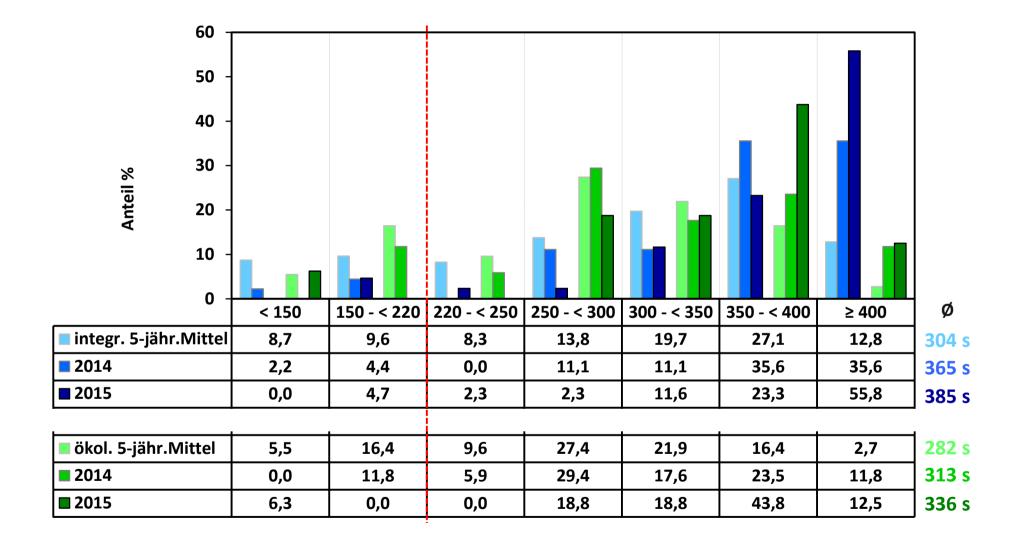
Weizen - Probenahmeorte



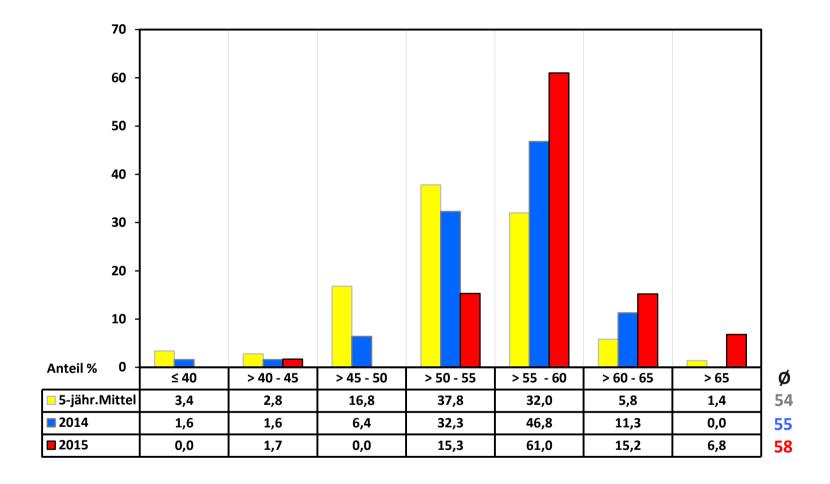
Weizenklassifizierung


Korrelation Protein: Klebergehalt

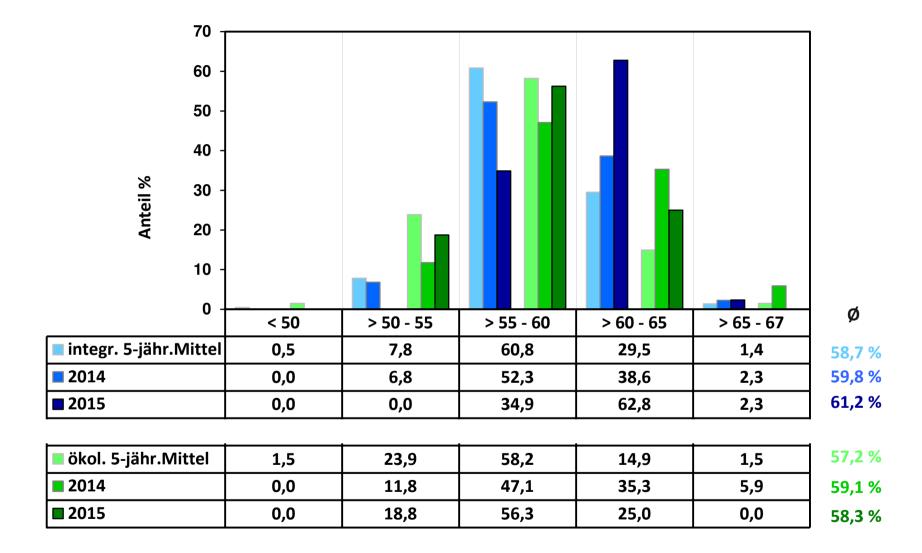
Protein-Dumas (% i.T.)



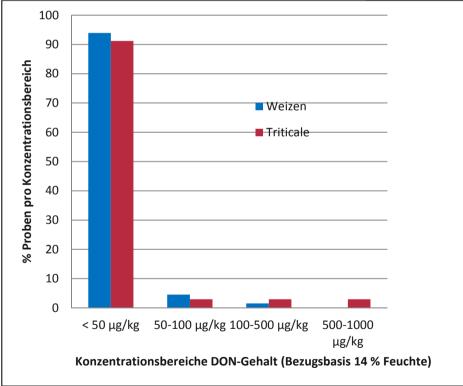
Feuchtklebergehalte (%)



Fallzahlen [S] (s)



Kornhärten (NIR)


Wasseraufnahmen (% bei 14% Feuchte)

Mykotoxinbelastung Ernte 2015

Im Rahmen des Vorerntemonitoring wurden in diesem Jahr 100 Vorernteproben auf Mykotoxine untersucht, davon 66 Weizen- und 34 Triticaleproben.

Die Gehalte an Deoxynivalenol (DON) liegen zwischen 16-675 µg/kg und damit deutlich unter dem EU-Grenzwert von 1250 µg/kg für unverarbeitetes Getreide. Zearalenon (ZEA) wurde in keiner der Vorernteproben nachgewiesen.

Erste Ergebnisse sind seit dem 22.07.2015 auf der ISIP-Plattform (www.isip.de) dargestellt.

Mikrobiologie Weizen in KbE/g, ökologisch - Ernte 2015

Parameter	Richtwerte* Warnwerte*	Muster 32	Muster 46	Muster 49	Muster 53	Muster 55
GKZ	1,0 x 10 ⁶	5,0 x 10 ⁵	5,5 x 10 ⁶	2,0 x 10 ⁶	3,5 x 10 ⁶	1,0 x 10 ⁶
Hefen	1,0 x 10 ³	3,0 x 10 ⁴	6,0 x 10 ⁴	4,0 x 10 ⁴	1,2 x 10 ⁵	5,0 x 10 ⁴
Schipi	1,0 x 10 ⁴	6,0 x 10 ³	3,0 x 10 ⁴	1,5 x 10 ⁴	1,8 x 10 ⁵	1,5 x 10 ⁴
Enterobacteriaceae	1,0 x 10 ⁵ 1,0 x 10 ⁶	4,0 x 10 ⁴	2,0 x 10 ⁵	6,0 x 10 ⁵	9,5 x 10 ⁵	1,0 x 10 ⁵
E.coli	10 100	n.n.	n.n.	n.n.	n.n.	n.n.
Bac.cereus	1,0 x 10 ² 1,0 x 10 ³	< 10 ²	< 10²	1,0 x 10 ²	2,0 x 10 ²	1,0 x 10 ²
Staph.aureus	1.0×10^{2} 1.0×10^{3}	n.n.	n.n.	n.n.	n.n.	n.n.
Salm./25g	n.n.(Warnwert)	n.n.	n.n.	n.n.	n.n.	n.n.
Sulfitred. Cl.	1.0×10^2 1.0×10^3	n.n.	< 10	n.n.	< 10	n.n.

^{*} Richt-und Warnwerte für Getreidemahlerzeugnisse; DGHM, Stand März 2015

Beurteilung

Unter Bezug auf die untersuchten Parameter werden die empfohlenen Warnwerte in Anlehnung an Getreidemahlerzeugnisse (DGHM, Stand März 2015) nicht überschritten, die Muster sind aus mikrobiologisch-hygienischer Sicht ohne Beanstandung.

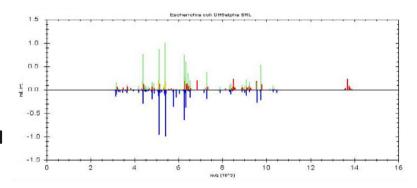
Mikrobiologie Weizen in KbE/g, integriert - Ernte 2015

Parameter	Richtwerte* Warnwerte*	Muster 18	Muster 39	Muster 45	Muster 48	Muster 59
GKZ	1,0 x 10 ⁶	1,0 x 10 ⁵	1,0 x 10 ⁶	1,0 x 10 ⁶	1,0 x 10 ⁶	2,5 x 10 ⁶
Hefen	1,0 x 10 ³	1,0 x 10 ³	1,1 x 10 ⁵	1,4 x 10 ⁵	6,0 x 10 ⁴	1,2 x 10 ⁵
Schipi	1,0 x 10 ⁴	3,0 x 10 ²	3,5 x 10 ⁴	4,0 x 10 ⁴	1,8 x 10 ⁴	1,4 x 10 ⁴
Enterobacteriaceae	1,0 x 10 ⁵ 1,0 x 10 ⁶	1,0 x 10 ⁴	1,2 x 10 ⁵	2,0 x 10 ⁵	2,0 x 10 ⁵	1,5 x 10 ⁵
E.coli	10 100	10	n.n.	n.n.	n.n.	n.n.
Bac.cereus	1.0×10^{2} 1.0×10^{3}	< 10 ²				
Staph.aureus	1.0×10^{2} 1.0×10^{3}	n.n.	n.n.	n.n.	< 10	n.n.
Salm./25g	n.n.(Warnwert)	n.n.	n.n.	n.n.	n.n.	n.n.
Sulfitred. Cl.	1.0×10^2 1.0×10^3	n.n.	n.n.	< 10	n.n.	n.n.

^{*}Richt-und Warnwerte für Getreidemahlerzeugnisse; DGHM, Stand März 2015

Beurteilung

Unter Bezug auf die untersuchten Parameter werden die empfohlenen Warnwerte in Anlehnung an Getreidemahlerzeugnisse (DGHM, Stand März 2015) nicht überschritten, die Muster sind aus mikrobiologisch-hygienischer Sicht ohne Beanstandung.


Einsatz der Massenspektrometrie in der Mikrobiologie - MALDI-TOF/MS

<u>Maldi-TOF/MS (Matrix-assisted laser</u> <u>desorption/ionization-time-of-flight/mass</u> spectrometry)

Mikrobiologische Bewertung zur Verkehrsfähigkeit von LM bei Überschreitungen von DGHM-Richt- und Warnwerten

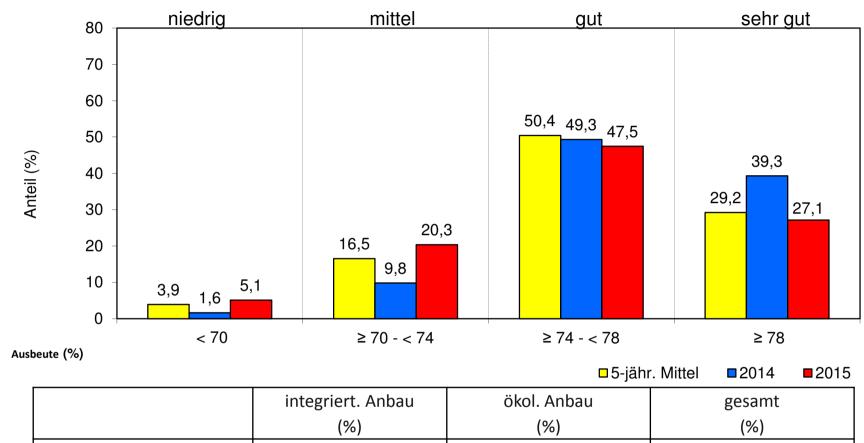
- Speziesidentifizierung von Bakterien, Pilze, Hefe
- Übernahme des Verfahrens aus der Medizin in die Lebensmittelchemie
- Kultivierte Proben (24 h) können direkt über das MALDI
 Target analysiert werden Ergebnis in 36 h
- Artspezifische Protein-Fingerprint Massenspektren der Mikroorganismen
- Datenbankabgleich mit individuellen Spektren per Spezies über Datenbank Biotyper Fa. Bruker Daltonik
- Software identifiziert grampositive und gramnegative Bakterien, Hefe, Pilze und Sporen anhand des spezifischen Protein-Fingerprints

Species identification of microorganisms by MALDI-TOF/MS

Spektren Auswertung über Datenbank Biotyper

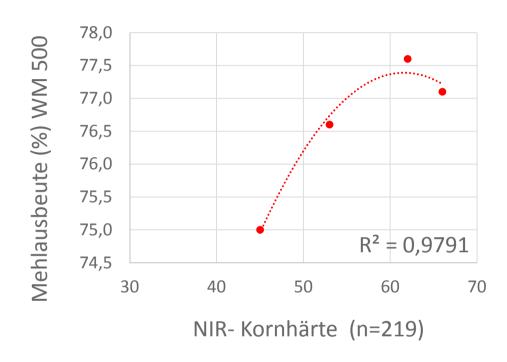
Sportion Adottoriang abor Batoribant Biotyper						
Range	Description	Symbol	Colour			
2,300 – 3,000	Speziesidentifizierung sehr wahrscheinlich	(+++)	green			
2,000 – 2,299	sichere Identifizierung der Gattung, wahrscheinliche Speziesidentifizierung	(++)	green			
1,700 – 1,999	wahrscheinliche Identifizierung der Gattung	(+)	<mark>yellow</mark>			
0,000 – 1,699	keine zuverlässige Identifizierung	(-)	<mark>red</mark>			
< 0,000	"keine Peaks ermittelt" bzw. "(noch) nicht vorhandenes Spektrum"	(-)	<mark>red</mark>			

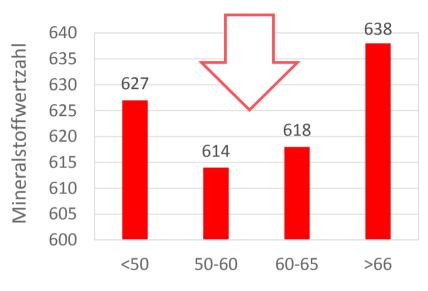
Innerhalb der mit ** gekennzeichneten Prüfbereiche ist dem Prüflaboratorium, ohne dass es einer vorherigen Information und Zustimmung der Deutsche Akkreditierungsstelle GmbH bedarf, die Modifizierung sowie Weiter- und Neuentwicklung von Prüfverfahren gestattet.


Die aufgeführten Prüfverfahren sind beispielhaft.

12.3 Anreicherungsverfahren, kulturell-mikrobiologische Bestimmung von spezifischen Keimen mit massenspektrometrischer Bestätigung in Lebens- und Futtermitteln**

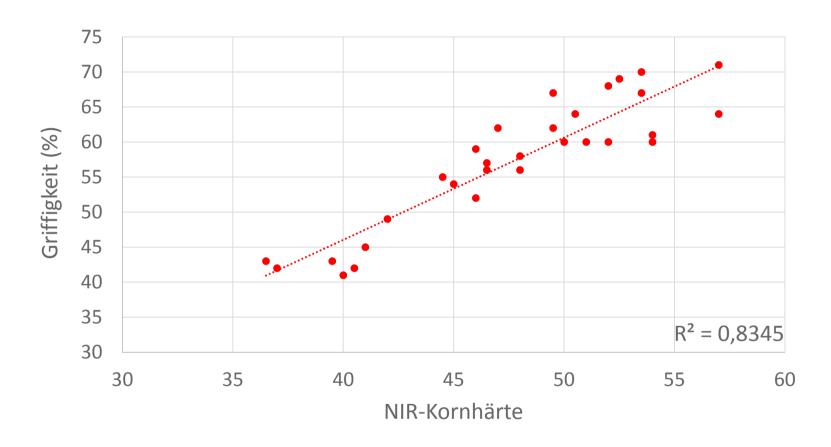
PA_BT-100	massenspektrometrische Bestätigung von Bakterien- und
2014-06	Hefespezies mittels Maldi-TOF/MS und Biotypersoftware
PA_BT-101	massenspektrometrische Bestätigung von Pilzen- und
2014-06	Schimmelpilzen mittels Maldi-TOF/MS und Biotypersoftware


Mahlfähigkeit Weizen- Häufigkeitsverteilung und mittlere Ausbeuten


	integriert. Anbau	ökol. Anbau	gesamt
	(%)	(%)	(%)
5-jähriges Mittel	76,0	75,1	75,8
MW 2014	77,6	75,7	77,1
MW 2015	76,2	74,7	75,8
Maximum 2015	82,3	80,7	82,3
Minimum 2015	71,8	60,2	60,2

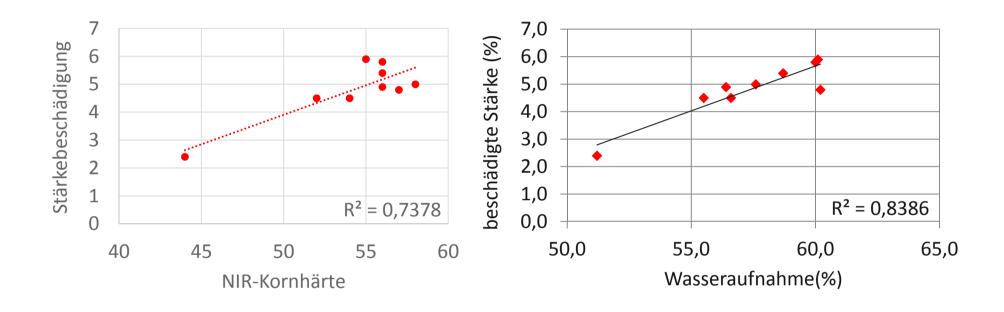
Zusammenhang NIR-Kornhärte und Mehlausbeute und Mineralstoff-Wertzahl

- gewünschter Bereich

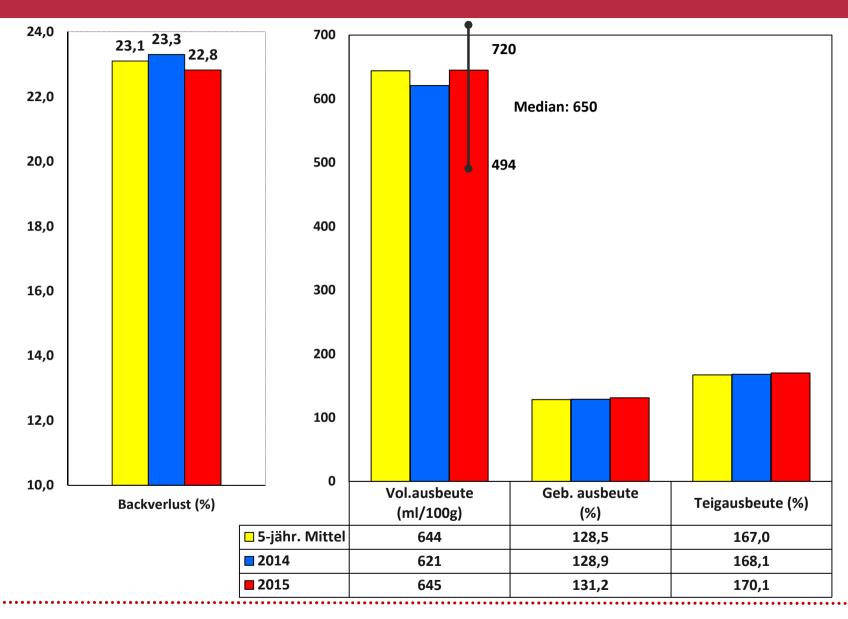

NIR-Kornhärte-Wertebereich

- Trend mit steigender Kornhärte stieg Mehlausbeute bis zu einem Maximum, danach nimmt diese ab

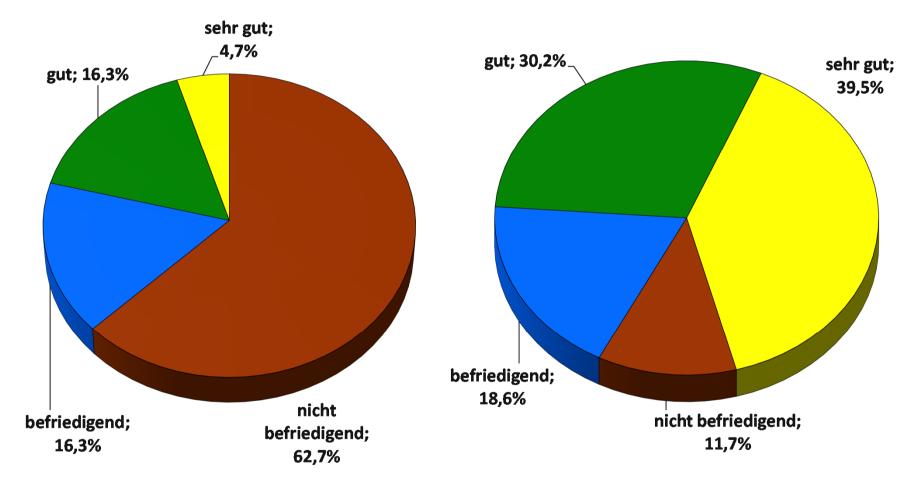
- die MWZ soll niedrig sein, d.h. hohe
 Ausbeute an hellen Mehlen
- bei mittlerer NIR Kornhärte, niedrige MWZ


Zusammenhang NIR-Kornhärte Griffigkeit

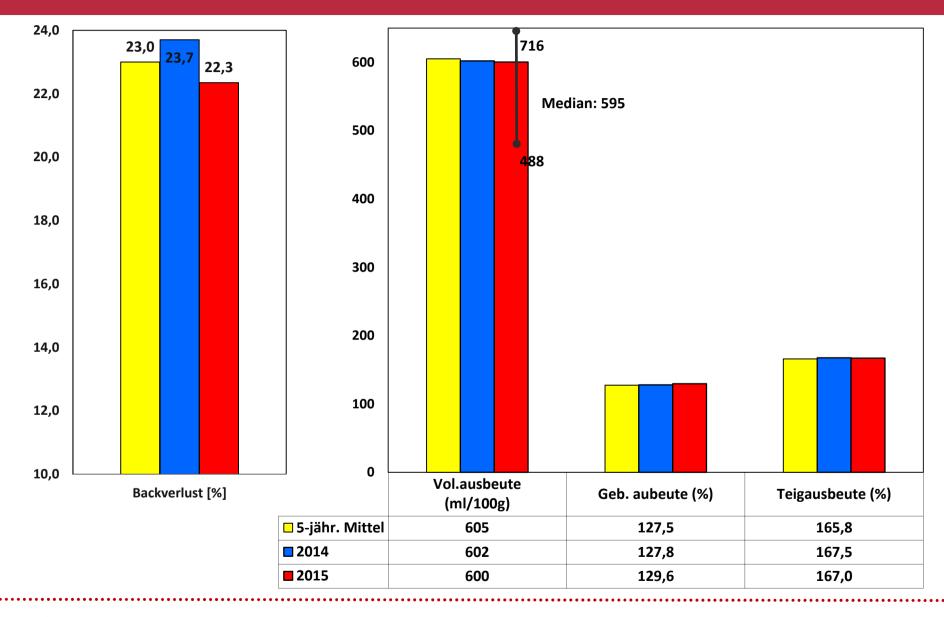
Griffigkeit: Anteil auf Sieb > 75 μ m (Luftstrahlsieb)



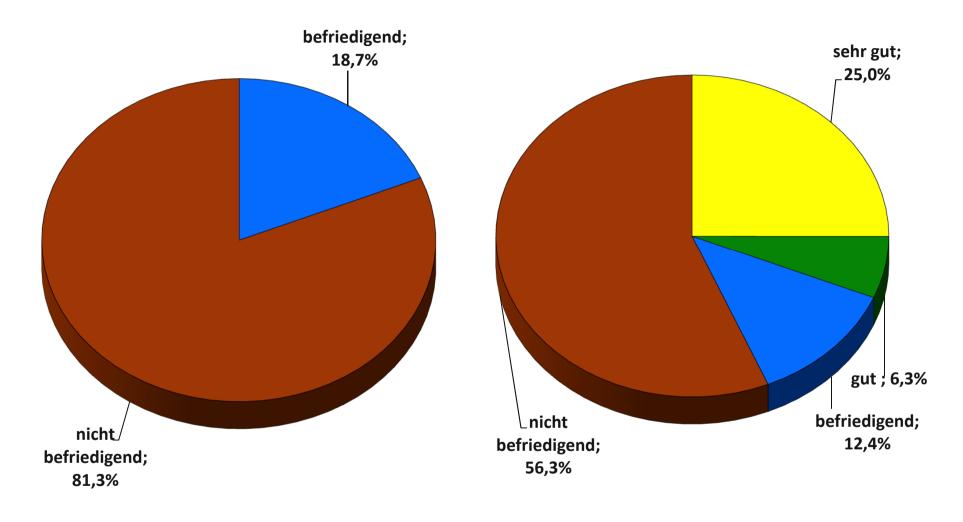
Zusammenhang NIR-Kornhärte, Stärkebeschädigung und Wasseraufnahmefähigkeit



Backergebnisse Weizenmehl – integrierter Anbau


Qualitätseinstufung Weizenmehl – integrierter Anbau

Backverhalten Volumenausbeute



Backergebnisse Weizenmehl- ökologischer Anbau

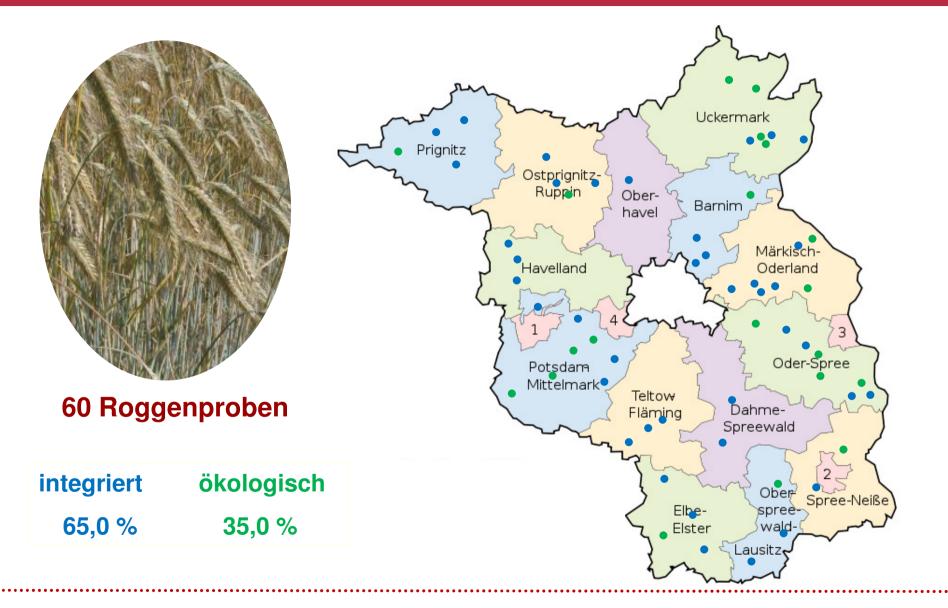
Qualitätseinstufung Weizenmehl- ökologischer Anbau

Backverhalten

Volumenausbeute

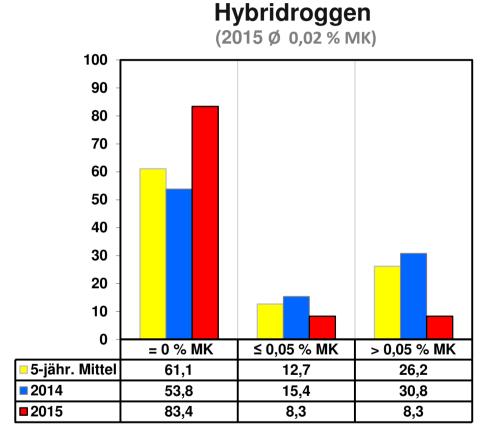
Weizenmehl - Ergebnisse und Verarbeitungshinweise

Es gibt geringfügige qualitative Veränderungen zur Ernte im Jahr 2014:

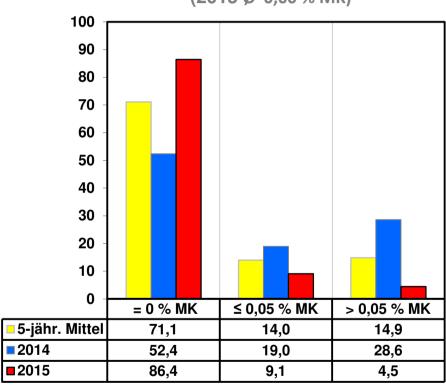

- Differenzierung der Qualitäten innerhalb Deutschlands
- Proteingehalte sind höher als 2014
- Wasseraufnahme ist höher und demzufolge auch die Teigausbeuten (integrierter Anbau)
- Kleber ist im Allgemeinen weicher → Knet- und Gärtoleranz eventuell eingeschränkt
- Lockerung und Porung der Gebäcke ist offener
- Krume etwas saftiger
- Volumina sind gleich mit Tendenz zu größer

Verarbeitungshinweise:

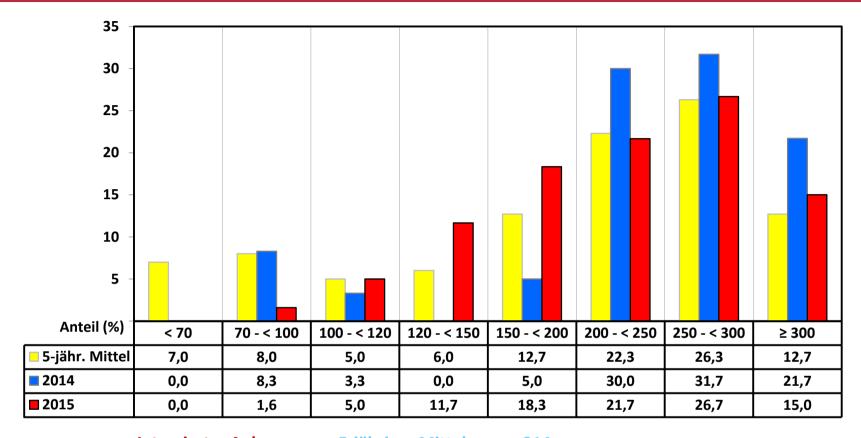
- Teigausbeute kann leicht erhöht werden (ca. 1 %)
- Knetzeiten begrenzen 30 % Langsamgang/70 % Schnellgang um Toleranz auszugleichen
- Teigtemperatur 26 bis 27°C
- Teigruhe einhalten Gärstabilität bei Gare beachten, ev. Gärzeit verkürzen
- Backregime unverändert



Roggen - Probenahmeorte



Mutterkornbelastungen (%)


Populationsroggen

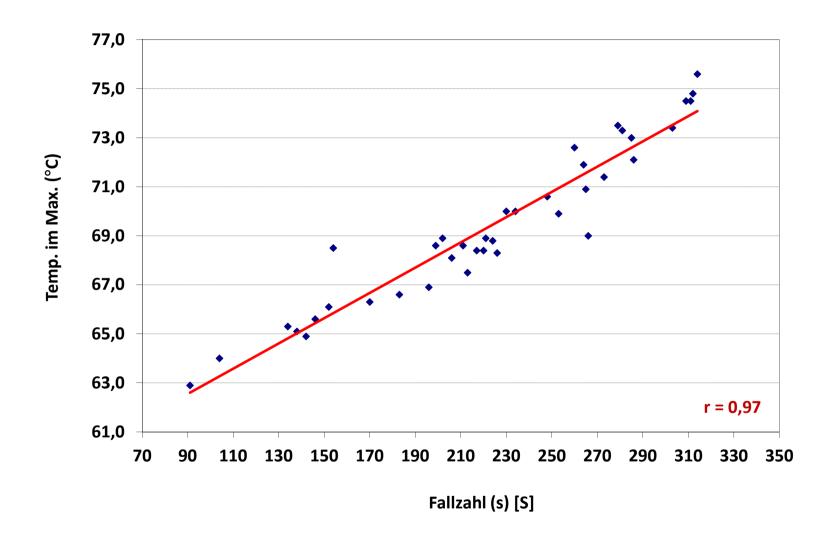
(2015 Ø 0,00 % MK)

Fallzahlen [S] (s)

<u>Integrierter Anbau:</u> 5-jähriges Mittel 214 s

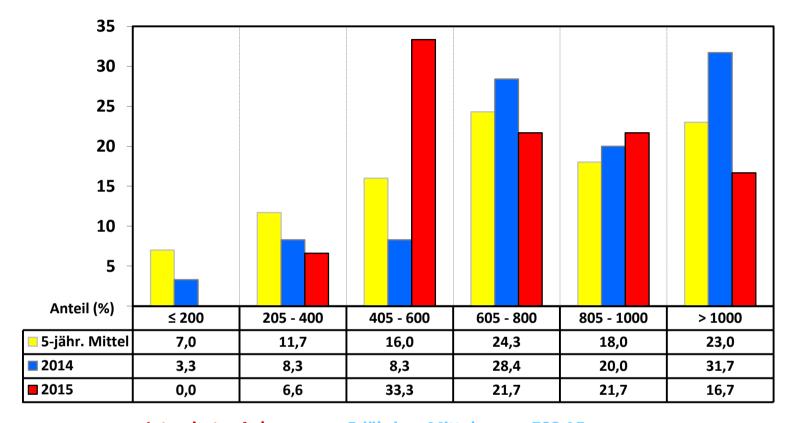
2014 243 s

2015 224 s


Ökologischer Anbau: 5-jähriges Mittel 204 s

2014 242 s

2015 221 s



Korrelation Fallzahl – Temp. im Visk.-Max.

Viskositäts-Maximum (AE)

Integrierter Anbau: 5-jähriges Mittel 788 AE

2014 885 AE

2015 760 AE

Ökologischer Anbau: 5-jähriges Mittel 701 AE

2014 803 AE 2015 660 AE

Mikrobiologie Roggen in KbE/g, ökologisch - Ernte 2015

Parameter	Richtwerte* Warnwerte*	Muster 22	Muster 26	Muster 39	Muster 40	Muster 59
GKZ	1,0 x 10 ⁶	1,7 x 10 ⁷	3,0 x 10 ⁶	2,0 x 10 ⁶	4,2 x 10 ⁶	2,5 x 10 ⁶
Hefen	1,0 x 10 ³	2,0 x 10 ⁵	9,0 x 10 ⁴	1,2 x 10 ⁵	1,4 x 10 ⁵	1,4 x 10 ⁵
Schipi	1,0 x 10 ⁴	5,0 x 10 ⁴	4,0 x 10 ⁴	1,2 x 10 ⁵	2,5 x 10 ⁴	2,0 x 10 ⁴
Enterobacteriaceae	1,0 x 10 ⁵ 1,0 x 10 ⁶	2,7 x 10 ⁶	9,0 x 10 ⁵	1,0 x 10 ⁵	3,0 x 10 ⁵	4,7 x 10 ⁵
E.coli	10 100	n.n.	n.n.	n.n.	n.n.	n.n.
Bac.cereus	1,0 x 10 ² 1,0 x 10 ³	< 10 ²	< 10²	< 10²	< 10²	< 10 ²
Staph.aureus	1.0×10^{2} 1.0×10^{3}	n.n.	n.n.	n.n.	n.n.	n.n.
Salm./25g	n.n.(Warnwert)	n.n.	n.n.	n.n.	n.n.	n.n.
Sulfitred. Cl.	1.0×10^2 1.0×10^3	n.n.	n.n.	n.n.	n.n.	n.n.

^{*}Richt-und Warnwerte für Getreidemahlerzeugnisse; DGHM, Stand März 2015

Beurteilung

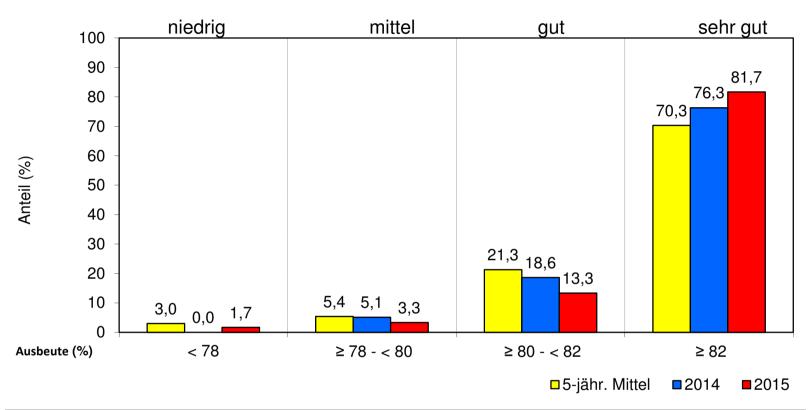
Unter Bezug auf die untersuchten Parameter werden die empfohlenen Warnwerte in Anlehnung an Getreidemahlerzeugnisse (DGHM, Stand März 2015) nicht überschritten, die Muster sind aus mikrobiologisch-hygienischer Sicht ohne Beanstandung.

Beurteilung für Muster 22

Unter Bezug auf die untersuchten mikrobiologischen Parameter überschreitet das Muster den empfohlenen Warnwert für Enterobacteriaceae in Anlehnung an Getreidemahlerzeugnisse (DGHM, Stand März 2015).

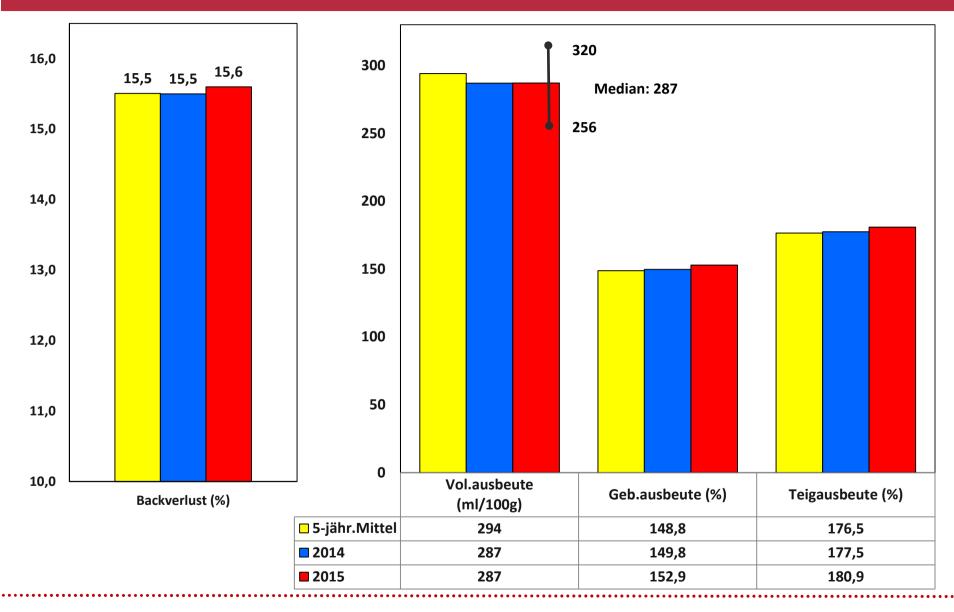
Mikrobiologie Roggen in KbE/g, integriert - Ernte 2015

Parameter	Richtwerte* Warnwerte*	Muster 25	Muster 36	Muster 44	Muster 56	Muster 44
GKZ	1,0 x 10 ⁶	6,0 x 10 ⁶	2,3 x 10 ⁶	5,0 x 10 ⁶	3,3 x 10 ⁶	7,0 x 10 ⁶
Hefen	1,0 x 10 ³	3,0 x 10 ⁵	6,0 x 10 ⁴	1,4 x 10 ⁵	2,5 x 10 ⁵	1,5 x 10 ⁵
Schipi	1,0 x 10 ⁴	9,0 x 10 ⁴	6,0 x 10 ⁴	5,0 x 10 ⁴	1,0 x 10 ⁵	1,0 x 10 ⁵
Enterobacteriaceae	1,0 x 10 ⁵ 1,0 x 10 ⁶	3,5 x 10 ⁵	1,0 x 10 ⁵	6,0 x 10 ⁵	5,0 x 10 ⁵	6,0 x 10 ⁵
E.coli	10 100	n.n.	n.n.	n.n.	n.n.	n.n.
Bac.cereus	1,0 x 10 ² 1,0 x 10 ³	< 10²	1,0 x 10 ²	< 10²	< 10²	< 10²
Staph.aureus	1,0 x 10 ² 1,0 x 10 ³	n.n.	n.n.	n.n.	n.n.	n.n.
Salm./25g	n.n.(Warnwert)	n.n.	n.n.	n.n.	n.n.	n.n.
Sulfitred. Cl.	1.0×10^2 1.0×10^3	n.n.	n.n.	n.n.	n.n.	n.n.

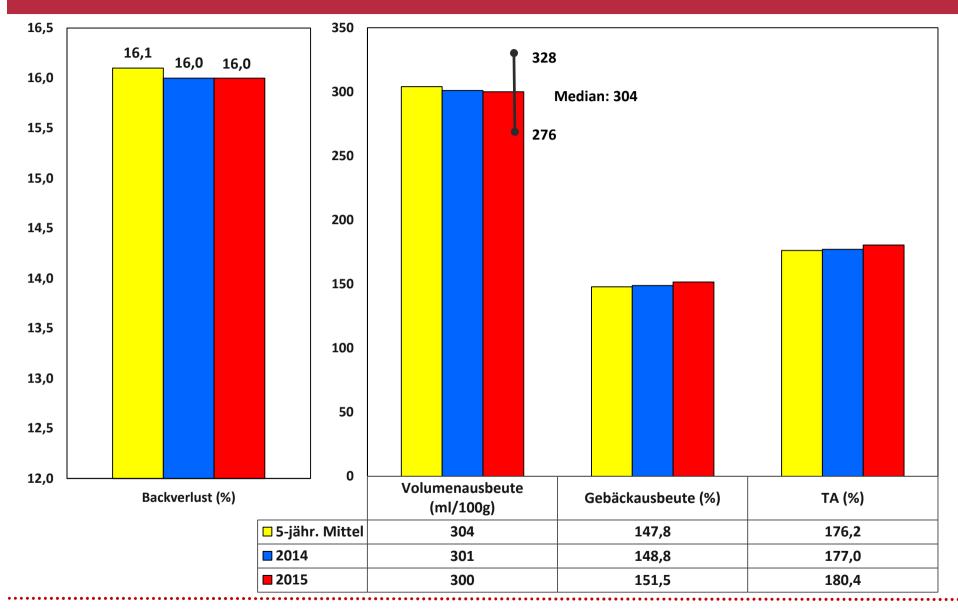

^{*}Richt-und Warnwerte für Getreidemahlerzeugnisse; DGHM, Stand März 2015

Beurteilung

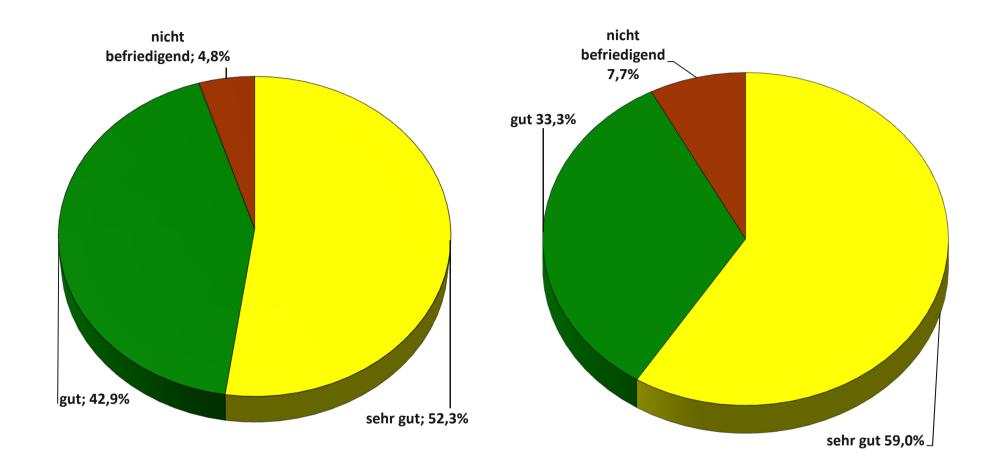
Unter Bezug auf die untersuchten Parameter werden die empfohlenen Warnwerte in Anlehnung an Getreidemahlerzeugnisse (DGHM, Stand März 2015) nicht überschritten, die Muster sind aus mikrobiologisch-hygienischer Sicht ohne Beanstandung.


Mahlfähigkeit -Roggen

	integr. Anbau	ökol. Anbau	gesamt
	(%)	(%)	(%)
5-jähriges Mittel	82,9	83,6	83,1
MW 2014	83,3	84,0	83,5
MW 2015	82,9	84,1	83,3
Maximum 2015	88,4	86,3	88,4
Minimum 2015	76,6	81,0	76,6



Backergebnisse Roggenmehl – integrierter Anbau



Backergebnisse Roggenmehl- ökologischer Anbau

Qualitätseinstufung Roggenmehl- ökologischer u. integrierter Anbau

Ökologischer Anbau

Integrierter Anbau

Roggenmehl – Ergebnisse und Verarbeitungshinweise

Es gibt geringfügige qualitative Veränderungen zur Ernte im Jahr 2014:

- Fallzahlen sind niedriger
- Viskositätsmaximum und -temperaturen sind geringer
- Wasseraufnahme ist höher und demzufolge auch die Teigausbeuten (beide Anbauarten)
- Gär- und Knettoleranz sind gut, Gärstabilität gut analog 2014
- Lockerung der Gebäcke ist offen
- Krume saftig, gute Frischhaltung
- Volumina sind auf Niveau von 2014

Verarbeitungshinweise:

- Teigausbeute kann erhöht werden (ca. 2 %)
- ggf. Einsatz dunklerer Mehle
- Versäuerung erfolgt analog 2014 -
- Sauerteig TA können um 1...2 % erhöht werden
- Knetzeiten unverändert 60 % Langsamgang/40 % Schnellgang
- Backregime unverändert

